Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
The Korean Journal of Pain ; : 160-167, 2019.
Article in English | WPRIM | ID: wpr-761702

ABSTRACT

BACKGROUND: Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test. METHODS: On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded. RESULTS: Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin. CONCLUSIONS: It seems that antinocicptive effects of artemisinin are mediated by GABAA receptors.


Subject(s)
Adult , Animals , Humans , Male , Mice , Acetic Acid , Analgesics , Analgesics, Opioid , Bicuculline , Ethanol , gamma-Aminobutyric Acid , Indomethacin , Inflammation , Naloxone , Neuralgia , Receptors, GABA
2.
Neuroscience Bulletin ; (6): 301-314, 2019.
Article in English | WPRIM | ID: wpr-775476

ABSTRACT

Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brush-evoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1 (Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury (SNI). Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in naïve but also in ML133-pretreated mice. In contrast, bicuculline, a GABA receptor antagonist, induced only punctate, but not dynamic, allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents (gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration or acute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively. In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.


Subject(s)
Animals , Male , Bicuculline , Pharmacology , Disease Models, Animal , Glycine , Metabolism , Hyperalgesia , Drug Therapy , Metabolism , Imidazoles , Pharmacology , Inhibitory Postsynaptic Potentials , Physiology , Mice, Inbred C57BL , Neurons , Metabolism , Neurotransmitter Agents , Pharmacology , Peripheral Nerve Injuries , Drug Therapy , Metabolism , Phenanthrolines , Pharmacology , Potassium Channels, Inwardly Rectifying , Metabolism , Receptors, GABA-A , Metabolism , Receptors, Glycine , Metabolism , Strychnine , Pharmacology , Synaptic Transmission , Physiology , Tissue Culture Techniques , Touch
3.
Neuroscience Bulletin ; (6): 1007-1016, 2018.
Article in English | WPRIM | ID: wpr-775489

ABSTRACT

Exploring the transition from inter-ictal to ictal epileptiform discharges (IDs) and how GABA receptor-mediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment. We used Mg-free artificial cerebrospinal fluid (ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg-free ACSF for 10 min-20 min, synchronous recurrent seizure-like events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges (IIDs) to pre-ictal epileptiform discharges (PIDs), and then to IDs. During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 μmol/L of the GABA receptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 μmol/L muscimol abolished all the epileptiform discharges. When the GABA receptor antagonist bicuculline was applied at 10 μmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABA receptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus.


Subject(s)
Animals , Male , Mice , Animals, Newborn , Bicuculline , Pharmacology , Disease Models, Animal , Epilepsy , Pathology , GABA-A Receptor Agonists , Pharmacology , GABA-A Receptor Antagonists , Therapeutic Uses , Hippocampus , Metabolism , In Vitro Techniques , Magnesium , Metabolism , Pharmacology , Membrane Potentials , Mice, Inbred C57BL , Muscimol , Pharmacology , Nerve Net , Receptors, GABA-A , Metabolism
4.
The Korean Journal of Physiology and Pharmacology ; : 65-74, 2017.
Article in English | WPRIM | ID: wpr-728256

ABSTRACT

Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta (IL-1β) (1 ng/10 µL) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A (GABAA) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the IL-1β-induced mechanical allodynia. In the control group, application of GABA (100 µM) or muscimol (3 µM) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the IL-1β-treated rats. These results suggest that some large myelinated Aβ fibers gain access to the nociceptive system and elicit pain sensation via GABA(A) receptors under inflammatory pain conditions.


Subject(s)
Animals , Humans , Male , Rats , Bicuculline , Bumetanide , Capsaicin , gamma-Aminobutyric Acid , Gramicidin , Hyperalgesia , Injections, Subcutaneous , Interleukin-1beta , Membranes , Muscimol , Myelin Sheath , Neurons , Nociceptors , Rats, Sprague-Dawley , Receptors, GABA-A , Sensation
5.
International Journal of Oral Biology ; : 117-125, 2015.
Article in Korean | WPRIM | ID: wpr-41787

ABSTRACT

The present study investigated the role of central GABA(A) and GABA(B) receptors in orofacial pain in rats. Experiments were conducted on Sprague-Dawley rats weighing between 230 and 280 g. Intracisternal catheterization was performed for intracisternal injection, under ketamine anesthesia. Complete Freund's Adjuvant (CFA)-induced thermal hyperalgesia and inferior alveolar nerve injury-induced mechanical allodynia were employed as orofacial pain models. Intracisternal administration of bicuculline, a GABA(A) receptor antagonist, produced mechanical allodynia in naive rats, but not thermal hyperalgesia. However, CGP35348, a GABA(B) receptor antagonist, did not show any pain behavior in naive rats. Intracisternal administration of muscimol, a GABA(A) receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. On the contrary, intracisternal administration of bicuculline also attenuated the mechanical allodynia in rats with inferior alveolar nerve injury. Intracisternal administration of baclofen, a GABA(B) receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. In contrast to GABA(A) receptor antagonist, intracisternal administration of CGP35348 did not affect either the thermal hyperalgesia or mechanical allodynia. Our current findings suggest that the GABA(A) receptor, but not the GABA(B) receptor, participates in pain processing under normal conditions. Intracisternal administration of GABA(A) receptor antagonist, but not GABA(B) receptor antagonist, produces paradoxical antinociception under pain conditions. These results suggest that central GABA has differential roles in the processing of orofacial pain, and the blockade of GABA(A) receptor provides new therapeutic targets for the treatment of chronic pain.


Subject(s)
Animals , Rats , Anesthesia , Baclofen , Bicuculline , Catheterization , Catheters , Chronic Pain , Facial Pain , Freund's Adjuvant , gamma-Aminobutyric Acid , Hyperalgesia , Ketamine , Mandibular Nerve , Muscimol , Nociception , Rats, Sprague-Dawley , Receptors, GABA , Receptors, GABA-A
6.
The Korean Journal of Physiology and Pharmacology ; : 517-524, 2014.
Article in English | WPRIM | ID: wpr-727691

ABSTRACT

Phasic and tonic gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the GABA(A) receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular Ca2+ and Ca2+/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via Ca2+ and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.


Subject(s)
Animals , Rats , Electronic Data Processing , Bicuculline , Brain , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cyclic AMP-Dependent Protein Kinases , Inhibitory Postsynaptic Potentials , Membrane Potentials , Nervous System , Neurons , Protein Kinases , Receptors, GABA-A , Visual Cortex
7.
IJPR-Iranian Journal of Pharmaceutical Research. 2013; 12 (2): 407-413
in English | IMEMR | ID: emr-142662

ABSTRACT

The objective of the present investigation was to assess the possible involvement of GABAergic mechanism in analgesic effect of aqueous extract of Origanum Vulgare [ORG] in a rat model of acute pain test. Sixty-three anaesthetized male Wistar rats [200-250 g] were cannulated into the left ventricle. Five to seven days after the recovery from surgery, ORG extract was intraventricularly injected at dose of 3 ?g/rat i.c.v. Then, baclofen [10 mg/Kg, IP], CGP35348 [100 nmol/Kg, i.c.v], muscimol [1 mg/Kg IP] and bicuculline [5 mg/Kg IP] were separately injected 20 min before the injection of ORG. The experimental groups were compared with intact [control] group [n = 7]. The response latency of rats to thermal stimulation was recorded using Tail-Flick test. Injection of ORG extract resulted in a significant and dose-dependent increase in the response latency. There was also a significant increase in the response latency after co-administration of ORG extract with baclofen when compared with control group. However, following co-administration of ORG extract/bicuculline, a significant decrease in the response latency was observed compared to control group. In conclusion, the results of the present study suggest that aqueous extract of Origanum vulgare L. ssp. viridis possesses antinociceptive activity in a dose-dependent manner and ORG-induced antinociception might be mediated, at least in part, by both GABA receptors


Subject(s)
Male , Animals, Laboratory , Pain Threshold/drug effects , Receptors, GABA-B/drug effects , Receptors, GABA , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , gamma-Aminobutyric Acid , Bicuculline/pharmacology , Muscimol/pharmacology , Rats, Wistar , Plant Extracts/pharmacology
8.
Braz. j. med. biol. res ; 45(11): 1025-1030, Nov. 2012. ilus, tab
Article in English | LILACS | ID: lil-650579

ABSTRACT

The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.


Subject(s)
Animals , Male , Rats , Anxiety/physiopathology , Behavior, Animal/drug effects , Escape Reaction/drug effects , Panic Disorder/physiopathology , Periaqueductal Gray/drug effects , Behavior, Animal/physiology , Bicuculline/pharmacology , Electrodes, Implanted , Escape Reaction/physiology , Maze Learning/drug effects , Maze Learning/physiology , Periaqueductal Gray/physiology , Rats, Wistar
9.
Braz. j. med. biol. res ; 45(4): 328-336, Apr. 2012. ilus
Article in English | LILACS | ID: lil-622754

ABSTRACT

The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.


Subject(s)
Animals , Male , Rats , Dorsomedial Hypothalamic Nucleus/physiology , Escape Reaction/physiology , Hypothalamus, Posterior/physiology , Panic Disorder/metabolism , Bicuculline/pharmacology , Dorsomedial Hypothalamic Nucleus/drug effects , GABA-A Receptor Antagonists/pharmacology , Hypothalamus, Posterior/drug effects , Maze Learning , Pain Threshold/drug effects , Panic Disorder/etiology
10.
Acta Pharmaceutica Sinica ; (12): 534-538, 2011.
Article in Chinese | WPRIM | ID: wpr-348923

ABSTRACT

.This study is to investigate the analgesic effect produced by intrathecal injection (ith) of oxysophoridine (OSR) and the mechanism of GABAA receptor. Warm water tail-flick test was used to detect the analgesic effect of OSR (12.5, 6.25, and 3.13 mg.kg-1 ith) and to observe the influence of GABA (gamma aminobutyric acid) agonist or antagonist on the analgesic effect of OSR in mice. Immunohistochemistry method were used to detect the influence of OSR (12.5 mg.kg-1, ith) on the GABAARalpha1 protein expression in spinal cord. The results obtained covers that OSR (12.5 and 6.25 mg.kg-, ith) alleviates pain significantly with the warm water tail-flick test (P<0.05, P<0.01), the rate of pain threshold increases by 68.45%; GABA and muscimol (MUS) produces analgesic synergism together with the OSR, picrotoxin (PTX) and bicuculline (BIC) antagonize the analgesic effect of OSR; OSR (12.5 mg.kg-1, ith) significantly increase the positive number of GABAARalpha1 nerve cell in spinal cord (P<0.01) and significantly decrease the average grey levels (P<0.01). In conclusion, OSR intrathecal injection has significant analgesic effect. And GABAA receptor in spinal cord is involved in the analgesic mechanism.


Subject(s)
Animals , Female , Male , Mice , Alkaloids , Pharmacology , Analgesics , Pharmacology , Bicuculline , Pharmacology , GABA-A Receptor Agonists , Pharmacology , GABA-A Receptor Antagonists , Pharmacology , Injections, Spinal , Muscimol , Pharmacology , Pain Threshold , Picrotoxin , Pharmacology , Random Allocation , Receptors, GABA-A , Metabolism , Spinal Cord , Metabolism , gamma-Aminobutyric Acid , Pharmacology
11.
Journal of Southern Medical University ; (12): 842-846, 2010.
Article in Chinese | WPRIM | ID: wpr-290046

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of bicuculline, a selective GABAA receptor antagonist, on airway remodeling in the murine model of chronic allergen-induced asthma.</p><p><b>METHODS</b>Forty BALB/C mice were randomized into 4 groups, namely the control group, asthmatic model (induced by ovalbumin sensitization and challenge) group, budesonide inhalation group and bicuculline inhalation group. The mice were sacrificed 24 h after the last ovalbumin inhalation, and the lungs were lavaged with PBS and the total cells, eosinophils and lymphocytes counts were examined. Periodic acid-Schiff (PAS) staining was used for counting mucin-positive goblet cells in the lung tissue, and Masson Trichrome staining was used to evaluate collagen deposition. GABAARbeta2 and VEGF were quantified by immunohistochemistry.</p><p><b>RESULTS</b>The numbers of the total cells, eosinophils and lymphocytes counts in BALF were significantly greater in the bicuculline group than in the control and budesonide groups (P<0.01), but comparable to those in the asthmatic model group (P>0.05). The airway collagen deposition in the bicuculline group was comparable to that in the control and budesonide group (P>0.05), but was significantly less than that in the asthmatic model group (P<0.05). Significant differences were found in the airway histological mucus index between the bicuculline group and the other 3 groups (P<0.05). The airway GABAARbeta2-positive cell percentage in the bicuculline group was significantly greater that those in the control and budesonide (P<0.01 and 0.05), but similar with that in the asthmatic model group (P>0.05). The percentage of pulmonary perivascular VEGF-positive cells in the bicuculline group was significantly greater in the control and budesonide groups (P<0.01 and P<0.05), but comparable to that in the asthmatic model group (P>0.05).</p><p><b>CONCLUSION</b>GABAARbeta2 is expressed in both the airway epithelium and smooth muscles. Bicuculline inhalation can effectively suppress collagen deposition with a stronger inhibitory effect on mucus hypersecretion than budesonide.</p>


Subject(s)
Animals , Male , Mice , Airway Remodeling , Asthma , Drug Therapy , Pathology , Bicuculline , Therapeutic Uses , Disease Models, Animal , GABA-A Receptor Antagonists , Therapeutic Uses , Mice, Inbred BALB C
12.
Korean Journal of Anesthesiology ; : 76-86, 2010.
Article in English | WPRIM | ID: wpr-161425

ABSTRACT

BACKGROUND: The intrathecal (IT) administration of glycine or GABAA receptor antagonist result in a touch evoked allodynia through disinhibition in the spinal cord. Glycine is an inhibitory neurotransmitter that appears to be important in sensory processing in the spinal cord. This study was aimed to evaluate the effect of glycine-related amino acids on antagonizing the effects of IT strychnine (STR) or bicuculline (BIC) when each amino acid was administered in combination with STR or BIC. METHODS: A total of 174 male ICR mice were randomized to receive an IT injection of equimolar dose of glycine, betaine, beta-alanine, or taurine in combination with STR or BIC. Agitation in response to innocuous stimulation with a von Frey filament after IT injection was assessed. The pain index in hot-plate test were observed after it injection. The effect of it muscimol in combination with str or bic were also observed. RESULTS: The allodynia induced by STR was relieved by high dose of glycine or betaine. But, allodynia induced by BIC was not relieved by any amino acid. Whereas the STR-induced thermal hyperalgesia was only relieved by high dose of taurine at 120 min after IT injection, the BIC-induced one was relieved by not only high dose of taurine at 120 min but also low dose of glycine or betaine at 60 min after IT injection. The BIC-induced allodynia and thermal hyperalgesia was relieved by IT muscimol. CONCLUSIONS: This study suggests that IT glycine and related amino acids can reduce the allodynic and hyperalgesic action of STR or BIC in mice.


Subject(s)
Animals , Humans , Male , Mice , Amino Acids , beta-Alanine , Betaine , Bicuculline , Dihydroergotamine , Glycine , Hyperalgesia , Mice, Inbred ICR , Muscimol , Neurotransmitter Agents , Nitrogen Mustard Compounds , Spinal Cord , Strychnine , Taurine
13.
Yonsei Medical Journal ; : 82-87, 2010.
Article in English | WPRIM | ID: wpr-39506

ABSTRACT

PURPOSE: The inhibition of phosphodiesterase 5 produces an antinociception through the increase of cyclic guanosine monophosphate (cGMP), and increasing cGMP levels enhance the release of gamma-aminobutyric acid (GABA). Furthermore, this phosphodiesterase 5 plays a pivotal role in the regulation of the vasodilatation associated to cGMP. In this work, we examined the contribution of GABA receptors to the effect of sildenafil, a phosphodiesterase 5 inhibitor, in a neuropathic pain rat, and assessed the hemodynamic effect of sildenafil in normal rats. MATERIALS AND METHODS: Neuropathic pain was induced by ligation of L5/6 spinal nerves in Sprague-Dawley male rats. After observing the effect of intravenous sildenafil on neuropathic pain, GABAA receptor antagonist (bicuculline) and GABAB receptor antagonist (saclofen) were administered prior to delivery of sildenafil to determine the role of GABA receptors in the activity of sildenafil. For hemodynamic measurements, catheters were inserted into the tail artery. Mean arterial pressure (MAP) and heart rate (HR) were measured over 60 min following administration of sildenafil. RESULTS: Intravenous sildenafil dose-dependently increased the withdrawal threshold to the von Frey filament application in the ligated paw. Intravenous bicuculline and saclofen reversed the antinociception of sildenafil. Intravenous sildenafil increased the magnitude of MAP reduction at the maximal dosage, but it did not affect HR response. CONCLUSION: These results suggest that sildenafil is active in causing neuropathic pain. Both GABAA and GABAB receptors are involved in the antinociceptive effect of sildenafil. Additionally, intravenous sildenafil reduces MAP without affecting HR.


Subject(s)
Animals , Male , Rats , Baclofen/analogs & derivatives , Bicuculline/pharmacology , Blood Pressure/drug effects , Dose-Response Relationship, Drug , Heart Rate/drug effects , Hemodynamics/drug effects , Neuralgia/drug therapy , Pain Threshold/drug effects , Phosphodiesterase Inhibitors/therapeutic use , Piperazines/therapeutic use , Purines/therapeutic use , Rats, Sprague-Dawley , Receptors, GABA-A/antagonists & inhibitors , Receptors, GABA-B/antagonists & inhibitors , Sulfones/therapeutic use
14.
Braz. j. med. biol. res ; 42(1): 114-121, Jan. 2009. ilus
Article in English | LILACS | ID: lil-505427

ABSTRACT

We investigated the involvement of GABAergic mechanisms of the central amygdaloid nucleus (CeA) in unanesthetized rats subjected to acute isotonic or hypertonic blood volume expansion (BVE). Male Wistar rats bearing cannulas unilaterally implanted in the CeA were treated with vehicle, muscimol (0.2 nmol/0.2 µL) or bicuculline (1.6 nmol/0.2 µL) in the CeA, followed by isotonic or hypertonic BVE (0.15 or 0.3 M NaCl, 2 mL/100 g body weight over 1 min). The vehicle-treated group showed an increase in sodium excretion, urinary volume, plasma oxytocin (OT), and atrial natriuretic peptide (ANP) levels compared to control rats. Muscimol reduced the effects of BVE on sodium excretion (isotonic: 2.4 ± 0.3 vs vehicle: 4.8 ± 0.2 and hypertonic: 4.0 ± 0.7 vs vehicle: 8.7 ± 0.6 µEq·100 g-1·40 min-1); urinary volume after hypertonic BVE (83.8 ± 10 vs vehicle: 255.6 ± 16.5 µL·100 g-1·40 min-1); plasma OT levels (isotonic: 15.3 ± 0.6 vs vehicle: 19.3 ± 1 and hypertonic: 26.5 ± 2.6 vs vehicle: 48 ± 3 pg/mL), and ANP levels (isotonic: 97 ± 12.8 vs vehicle: 258.3 ± 28.1 and hypertonic: 160 ± 14.6 vs vehicle: 318 ± 16.3 pg/mL). Bicuculline reduced the effects of isotonic or hypertonic BVE on urinary volume and ANP levels compared to vehicle-treated rats. However, bicuculline enhanced the effects of hypertonic BVE on plasma OT levels. These data suggest that CeA GABAergic mechanisms are involved in the control of ANP and OT secretion, as well as in sodium and water excretion in response to isotonic or hypertonic blood volume expansion.


Subject(s)
Animals , Male , Rats , Amygdala/drug effects , Bicuculline/pharmacology , Blood Volume/drug effects , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , Muscimol/pharmacology , Amygdala/physiology , Atrial Natriuretic Factor/blood , Bicuculline/administration & dosage , Blood Volume/physiology , Diuresis/drug effects , Diuresis/physiology , GABA Agonists/administration & dosage , GABA Antagonists/administration & dosage , Muscimol/administration & dosage , Oxytocin/blood , Rats, Wistar , Sodium/urine
15.
Acta Physiologica Sinica ; (6): 99-107, 2009.
Article in English | WPRIM | ID: wpr-302475

ABSTRACT

In the present study, the correlated activities of adjacent ganglion cells of transient subtype in response to full-field white light stimulation were investigated in the chicken retina. Pharmacological studies and cross-correlation analysis demonstrated that application of the GABA(A) receptor antagonist bicuculline (BIC) significantly down-regulated the correlation strength while increasing the firing activities. Meanwhile, application of the GABA(A) receptor agonist muscimol (MUS) potentiated the correlated activities while decreasing the firing rates. However, application of the GABA(C) receptor antagonist (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) did not have a consistent influence on either the firing rates or the correlation strength. These results suggest that in the chicken retina, correlated activities among neighborhood transient ganglion cells can be increased while firing activities are reduced with the activation of GABA(A) receptors. The GABA(A)-receptor-mediated inhibitory pathway may be critical for improving the efficiency of visual information transmission.


Subject(s)
Animals , Mice , Action Potentials , Bicuculline , Pharmacology , GABA-A Receptor Antagonists , Pharmacology , Muscimol , Pharmacology , Phosphinic Acids , Pharmacology , Pyridines , Pharmacology , Receptors, GABA-A , Metabolism , Retina , Physiology , Retinal Ganglion Cells , Physiology , gamma-Aminobutyric Acid
16.
The Korean Journal of Physiology and Pharmacology ; : 461-467, 2009.
Article in English | WPRIM | ID: wpr-727456

ABSTRACT

The auditory cortex (A1) encodes the acquired significance of sound for the perception and interpretation of sound. Nitric oxide (NO) is a gas molecule with free radical properties that functions as a transmitter molecule and can alter neural activity without direct synaptic connections. We used whole-cell recordings under voltage clamp to investigate the effect of NO on spontaneous GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons preserving functional presynaptic nerve terminals. GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in the A1 were completely blocked by bicuculline. The NO donor, S-nitroso-N-acetylpenicillamine (SNAP), reduced the GABAergic sIPSC frequency without affecting the mean current amplitude. The SNAP-induced inhibition of sIPSC frequency was mimicked by 8-bromoguanosine cyclic 3',5'-monophosphate, a membrane permeable cyclic-GMP analogue, and blocked by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific NO scavenger. Blockade of presynaptic K+ channels by 4-aminopyridine, a K+ channel blocker, increased the frequencies of GABAergic sIPSCs, but did not affect the inhibitory effects of SNAP. However, blocking of presynaptic Ca2+ channels by Cd2+, a general voltage-dependent Ca2+ channel blocker, decreased the frequencies of GABAergic sIPSCs, and blocked SNAP-induced reduction of sIPSC frequency. These findings suggest that NO inhibits spontaneous GABA release by activation of cGMP-dependent signaling and inhibition of presynaptic Ca2+ channels in the presynaptic nerve terminals of A1 neurons.


Subject(s)
Animals , Humans , Rats , 4-Aminopyridine , Auditory Cortex , Benzoates , Bicuculline , gamma-Aminobutyric Acid , Guanosine , Imidazoles , Inhibitory Postsynaptic Potentials , Membranes , Neurons , Nitric Oxide , Patch-Clamp Techniques , S-Nitroso-N-Acetylpenicillamine , Synaptic Transmission , Tissue Donors
17.
The Korean Journal of Physiology and Pharmacology ; : 469-473, 2009.
Article in English | WPRIM | ID: wpr-727455

ABSTRACT

Induced activation of the gamma-aminobutyric acidA (GABA(A)) receptor in the retina of goldfish caused the fish to rotate in the opposite direction to that of the spinning pattern during an optomotor response (OMR) measurement. Muscimol, a GABA(A) receptor agonist, modified OMR in a concentration-dependent manner. The GABA(B) receptor agonist baclofen and GABA(C) receptor agonist CACA did not affect OMR. The observed modifications in OMR included decreased anterograde rotation (0.01~0.03 micrometer), coexistence of retrograde rotation and decreased anterograde rotation (0.1~30 micrometer) and only retrograde rotation (100 micrometer~1 mM). In contrast, the GABA(A) receptor antagonist bicuculline blocked muscimolinduced retrograde rotation. Based on these results, we inferred that the coding inducing retrograde movement of the goldfish retina is essentially associated with the GABA(A) receptor-related visual pathway. Furthermore, from our novel approach using observations of goldfish behavior the induced discrete snapshot duration was approximately 573 ms when the fish were under the influence of muscimol.


Subject(s)
Baclofen , Bicuculline , Clinical Coding , Cytarabine , Goldfish , Injections, Intraocular , Muscimol , Receptors, GABA , Receptors, GABA-A , Retina , Visual Pathways
18.
Journal of Southern Medical University ; (12): 918-921, 2009.
Article in Chinese | WPRIM | ID: wpr-268811

ABSTRACT

<p><b>OBJECTIVE</b>To evaluate the effect of bicuculline on the first spike latency of the neurons in the inferior colliculus of mice and investigate the role of GABA inhibition in sound signal processing of the neurons.</p><p><b>METHODS</b>In vivo extracellular recording was performed on the inferior colliculus of 13 BALB/c mice (4 to 5 weeks old) to record the neuronal response to pure tones. Bicuculline, a GABA-A receptor antagonist, was applied to the neurons iontophoretically through one channel in the three-barrel glass-pipettes. The first spike latency and other response properties of the characteristic frequency were recorded for analysis.</p><p><b>RESULTS</b>A total of 30 well-isolated single neurons were recorded. Increased spike counts characterized 96% of the neurons, with either increased (40%) or decreased (60%) latency of neuronal responses. Characteristic frequency alterations occurred in 50% of the neurons with increased spike latency, and the minimum threshold showed linear changes.</p><p><b>CONCLUSION</b>GABAergic inhibition may participate in the latency formation and increased frequency selectivity of mouse inferior colliculus neurons by lateral inhibition. The changes in the first spike latency can be indicative of the information integration in GABAergic neurons at the synaptic level.</p>


Subject(s)
Animals , Female , Male , Mice , Acoustic Stimulation , Psychology , Action Potentials , Bicuculline , Pharmacology , GABA Antagonists , Pharmacology , Inferior Colliculi , Physiology , Mice, Inbred BALB C , Neurons , Physiology , gamma-Aminobutyric Acid , Physiology
19.
The Korean Journal of Pain ; : 173-178, 2008.
Article in English | WPRIM | ID: wpr-111589

ABSTRACT

BACKGROUND: The intrathecal (IT) GABAA receptor antagonist, bicuculline (BIC), results in tactile allodynia (TA) through disinhibition in the spinal cord. Such disinhibition is considered to be an important mechanism for neuropathic pain. Agmatine, an endogenous polyamine, has a neuro-protective effect in the central nervous system. We investigated the analgesic effects and mechanisms of agmatine action on BIC-induced TA. METHODS: Male Sprague-Dawley rats, weighting 250-300 g, were subjected to implantations of PE-10 into the lumbar subarachnoid space for IT drug injection. Five days after surgery, either 10 microliter of normal saline (NS) or agmatine (30 microgram or 10 microgram) in 10 microliter NS were injected 10 min prior to BIC (10 microgram) or NMDA (5 microgram). We assessed the degree of TA (graded 0: no response, 1: mild response, 2: moderate response, 3: strong response) every 5 min for 30 min. Areas under curves and degree of TA were expressed as mean +/- SEM. Results were analyzed using one-way ANOVA followed by a Tukey test for multiple comparisons. P < 0.05 was considered significant. RESULTS: IT BIC-induced strong TA reached its peak and plateaued between 10 to 15 min. IT NS-NMDA induced mild transient TA for up to 15 min. Preemptive IT AG attenuated IT BIC-induced TA dose dependently and preemptive IT AG10 completely abolished the IT NMDA-induced TA. CONCLUSIONS: Preemptive IT AG attenuated the IT BIC-induced TA through inhibitory actions on postsynaptic NMDA receptor activation. AG might be a viable therapeutic option in the treatment of neuropathic pain.


Subject(s)
Humans , Male , Agmatine , Bicuculline , Central Nervous System , Hyperalgesia , N-Methylaspartate , Neuralgia , Nitrogen Mustard Compounds , Rats, Sprague-Dawley , Spinal Cord , Subarachnoid Space
20.
Neuroscience Bulletin ; (6): 278-282, 2008.
Article in English | WPRIM | ID: wpr-264666

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effects of gamma-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats.</p><p><b>METHODS</b>After GABA or the GABA(A)-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc.</p><p><b>RESULTS</b>When GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN.</p><p><b>CONCLUSION</b>Exogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABA(A) receptor participate and mediate the traumatic information transmission process in CNS.</p>


Subject(s)
Animals , Female , Male , Rats , Action Potentials , Physiology , Bicuculline , Pharmacology , Disease Models, Animal , Drug Administration Schedule , Electric Stimulation , GABA Antagonists , Pharmacology , Injections, Intraventricular , Methods , Morphine , Morphine Dependence , Pathology , Narcotics , Nucleus Accumbens , Metabolism , Pain , Pain Threshold , Physiology , Rats, Wistar , Reaction Time , Physiology , Time Factors , gamma-Aminobutyric Acid , Metabolism , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL